HIF-1-dependent stromal adaptation to ischemia mediates in vivo tumor radiation resistance.
نویسندگان
چکیده
PURPOSE Hypoxia-inducible factor 1 (HIF-1) promotes cancer cell survival and tumor progression. The specific role played by HIF-1 and tumor-stromal interactions toward determining tumor resistance to radiation treatment remains undefined. We applied a multimodality preclinical imaging platform to mechanistically characterize tumor response to radiation, with a focus on HIF-1-dependent resistance pathways. METHODS C6 glioma and HN5 human squamous carcinoma cells were stably transfected with a dual HIF-1 signaling reporter construct (dxHRE-tk/eGFP-cmvRed2XPRT). Reporter cells were serially interrogated in vitro before and after irradiation as monolayer and multicellular spheroid cultures and as subcutaneous xenografts in nu/nu mice. RESULTS In vitro, single-dose irradiation of C6 and HN5 reporter cells modestly impacted HIF-1 signaling in normoxic monolayers and inhibited HIF-1 signaling in maturing spheroids. In contrast, irradiation of C6 or HN5 reporter xenografts with 8 Gy in vivo elicited marked upregulation of HIF-1 signaling and downstream proangiogenic signaling at 48 hours which preceded recovery of tumor growth. In situ ultrasound imaging and dynamic contrast-enhanced (DCE) MRI indicated that HIF-1 signaling followed acute disruption of stromal vascular function. High-resolution positron emission tomography and dual-contrast DCE-MRI of immobilized dorsal skin window tumors confirmed postradiotherapy HIF-1 signaling to spatiotemporally coincide with impaired stromal vascular function. Targeted disruption of HIF-1 signaling established this pathway to be a determinant of tumor radioresistance. CONCLUSIONS Our results illustrate that tumor radioresistance is mediated by a capacity to compensate for stromal vascular disruption through HIF-1-dependent proangiogenic signaling and that clinically relevant vascular imaging techniques can spatially define mechanisms associated with tumor irradiation.
منابع مشابه
Angiogenesis, Metastasis, and Tumor Micronenvironment HIF-1–Dependent Stromal Adaptation to Ischemia Mediates In Vivo Tumor Radiation Resistance
Purpose:Hypoxia-inducible factor 1 (HIF-1) promotes cancer cell survival and tumor progression. The specific role played by HIF-1 and tumor–stromal interactions toward determining tumor resistance to radiation treatment remains undefined. We applied a multimodality preclinical imaging platform to mechanistically characterize tumor response to radiation, with a focus on HIF-1–dependent resistanc...
متن کاملThe selective hypoxia inducible factor-1 inhibitor PX-478 provides in vivo radiosensitization through tumor stromal effects.
Hypoxia inducible factor-1 (HIF-1) promotes tumor cell adaptation to microenvironmental stress. HIF-1 is up-regulated in irradiated tumors and serves as a promising target for radiosensitization. We initially confirmed that the orally bioavailable HIF-1 inhibitor PX-478 reduces HIF-1 protein levels and signaling in vitro in a dose-dependent manner and provides direct radiosensitization of hypox...
متن کاملBlockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model
Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...
متن کاملRadiosensitization and stromal imaging response correlates for the HIF-1 inhibitor PX-478 given with or without chemotherapy in pancreatic cancer.
Growing tumors are hypoxic and respond to microenvironmental stress through increased expression of the hypoxia inducible factor-1alpha (HIF-1alpha) transcription factor, resulting in an adaptive switch to glycolytic metabolism, angiogenic signaling, survival, and metastasis. HIF-1alpha expression is associated with tumor resistance to cytotoxic therapy and inferior patient outcomes. Pancreatic...
متن کاملIsoflurane Preconditioning Promotes the Survival and Migration of Bone Marrow Stromal Cells.
BACKGROUND Preconditioning with the volatile anesthetic isoflurane exerts protective effects in animal models of ischemia. The cytoprotective effects of isoflurane are dependent on the expression of hypoxia inducible factor-1 (HIF-1), a dimeric transcription factor that mediates cellular responses to hypoxia. METHODS We investigated the effect of isoflurane preconditioning on bone marrow stro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer research : MCR
دوره 9 3 شماره
صفحات -
تاریخ انتشار 2011